
N95-19765

C:i V/J/

Using CLIPS to Represent Knowledge
in a VR Simulation

Mark Engelberg

LinCom Corporation

role @gothamcity.jsc.nasa.gov

September 13, 1994

Abstract

Virtual reality (VR) is an exalting use of advanced hardware and

software techonologies to achieve an immersive simulation. Until re-

cently, the majority of virtual environments were merely "fly-throughs"
in which a user could freely explore a 3-dimensional world or a visual-

ized dataset. Now that the underlying technologies are reaching a level

of maturity, programmers are seeking ways to increase the complexity

and intera_tivity of immersive simulations. In most cases, intera_tiv-

ity in a virtual environment can be specified in the form "whenever

such-and-such happens to object X, it reacts in the following man-

ner." CLIPS and COOL provide a simple and elegant framework for

representing this knowledge-base in an efficient manner that ca_ be

extended incrementally. The complexity of a detailed simulation be-

comes more manageable when the control flow is governed by CLIPS'

rule-based inference engine as opposed to by traditional procedural

mechanisms. Examples in this paper will illustrate an effective way to

represent VR information in CLIPS, and to tie this knowledge base

to the input and output C routines of a typical virtual environment.

' 363

1 Background Information

1.1 Virtual Reality

A virtual experience, or more precisely, a sense of immersion in a computer

simulation, can be achieved with the use of specialized input/output devices.

The head-mounted display (HMD) is perhaps the interface that most char-

acterizes virtual reality. Two small screens, mounted close to the user's eyes,

block out the real world, and provide the user with a three-dimensional view

of the computer model. Many HMDs are mounted in helmets which also

contain stereo headphones, so as to create the illusion of aural, as well as vi-

sual immersion in the virtual environment. Tracking technologies permit the

computer to rewt the position and angle of the user's head, and the scene is

recalculated accordingly (ideally at a rate of thirty times a second or faster).

[1]
There are many types of hardware devices which allow a user to interact

with a virtual environment. At a minimum, the user must be able to navigate

through the envrionment. The ability to perform actions or select objects

in the environment is also critical to making a virtual environment truly

interactive. One popular input device is the DataGlove which enables the

user to specify actions and objects through gestures. Joysticks and several

variants are also popular navigational devices.

1.1.1 Training

Virtual reality promises to have a tremendous impact on the way that train-

ing is done, particularly in areas where hands-on training is costly or dan-

gerons. Training for surgery, space missions, and combat all fall into this

category; these fields have already benefitted from existing simulation tech-

nologies [2]. As Joseph Psotka explains, _Virtual reality offers training as

experience _ [3, p. 96].

1.1.2 Current Obstacles

VIi hardware is progressing at an astonishing rate. The price of HMDs and

graphics workstations continues to fall as the capabilities of the equipment

increase. Recent surveys of the literature have concluded that the biggest

364

obstacle right now in creating complex virtual environments is the software

tools. One study said that creating virtual environments was "much too

hard, and it took too much handcrafting and special-casing due to low-level

tools" [5, p. 6].

VR developers have suffered from a lack of focus on providing interactiv-

ity and intelligence in virtual environments. Researchers have been "most

concerned with hardware, device drivers and low-level support libraries, and

human factors and perception" [5, p. 6]. As a result,

Additional research is needed to blend multimodal display, mul-

tisensory output, multimodal data input, the ability to abstract

and expound (intelligent agent), and the ability to incorporate hu-

man intelligence to improve simulations of artifical environments.

Also lacking are the theoretical and engineering methodologies

generally related to software engineering and software engineer-

ing environments for computer-aided virtual world design. [4,

p. 10]

1.2 CLIPS

VR programmers need a high-level interaction language that is object-oriented

because "virtual environments have potentially many independent but inter-

acting objects with complex behavior that must be simulated" [5, p. 6]. But

unlike typical object-oriented systems, there must be "objects that have time-

varying behavior, such as being able to execute Newtonian physics or systems

of rules" [5, p. 7].

CLIPS 6.0 can fill this need for a high-level tool to program the interac-

tions of a virtual environment. COOL provides the object-oriented approach

to managing the large number of independent objects in complex virtual en-

vironments, and CLIPS 6.0 provides the ability to construct rules which rely

on pattern-matching on these objects.

CLIPS is a particularly attractive option for VR training applications

because many knowledge-bases for training are already implemented using

CLIPS. If the knowledge-base about how different objects act and interact in

a virtual environment is implemented in the same language as the knowledge-

base containing expert knowledge about how to solve tasks within the envi-

ronment, then needless programming effort can be saved.

365

2 Linking CLIPS with a Low-level VR Library

2.1 Data Structures

Every VR library must use some sort of data structure in order to store all

relevant positional and rotational information of each object in a virtual envi-
ronment. These structures are often called nodes and nodes are often linked

hierarchically in a tree structure known as a scene. In order to write CLIPS

rules about virtual objects, it is necessary to load all the scene information

into COOL.

The following NODE class has slots for a parent node, children nodes, z-,

y-, and z-coordinates, and rotational angles about the z-, y-, and z-axis.

(defclass NODE

(is-a USER)

(role concrete)

(slot node-index (visibility public)

(create-accessor read-write) (type INTEGER))

(slot parent (visibility public)

(create-accessor read-write) (type INSTANCE-NAME))

(multislot children (visibility public)

(create-accessor read-write) (type INSTANCE-NAME))

(slot x (visibility public) (create-accessor read) (type FLOAT))

(slot y (visibility public) (create-accsssor read) (type FLOAT))

(slot z (visibility public) (create-accessor read) (type FLOAT))

(slot xrot (visibility public) (create-accessor read) (type FLOAT))

(slot yrot (visibility public) (create-accessor read) (type FLOAT))

(slot zrot (visibility public) (create-accessor read) (type FLOAT)))

Itisa trivialmatter to write a converter which generates NODE instances

from a scene file.For example, a typicalscene might convert to:

(definstances tree

(BODY of NODE)

(HEAD of NODE)

366

; and so on

)

(modify-instance [BODY]

(x 800.000000)

(y -so.oooo0o)

(z 280.000000)

(xrot 180.000000)

(yrot 0.000000)

(zrot 180.000000)

(parent [REF])

(children [HEAD] [Rpalm]

; and so on

[Chair]))

2.2 Linking the Databases

Note that the NODE class has no default write accessors associated with slots

x, y, z, xrot, yrot, or zrot. Throughout the VR simulation, the NODE

instances must always reflect the values of the node structures stored in

the VR library, and vice versa. To do this, the default write accessors are

replaced by accessors which call a user-defined function to write the value to

the corresponding VR data structure immediately after writing the value to

the slot. Similarly, all of the VR functions must be slightly modified so that
any change to a scene node is automatically transmitted to the slots in its

corresponding NODEinstance.

The node-index slotof the NODE classis used to give each instance a

unique identifyingintegerwhich serves as an index into the C array of VR

node structures.This helps establishthe one-to-one correspondence between

the two databases.

2.3 Motion Interaction

A one-to-one correspondence between the database used internally by the VR

library and COOL objects permits many types of interactions to be easily

programmed from within CLIPS, paxticulaxly those dealing with motion.

The following example illustrates how CLIPS can pattern-match and change

slots, thus affecting the VR simulation.

367

(defrule rabbit-scared-of-blue-carrot

(object (name [RABBIT]) (x ?r))

(object (name [CARROT]) (x ?c_:(< ?c (+ ?r 5))&:(> ?c

i>

(send [RABBIT] put-x (- ?r 30)))

(- ?r 5))))

Assuming the rabbit and blue carrot can only move alon 8 the z-axis, this

rule can be paraphrased as "whenever the blue carrot gets within 5 inches of

the rabbit, the rabbit runs 30 inches away."

2.4 The Simulation Loop

Most interactivity in virtual environments can be almost entirely specified

by rules analogous the above example. A simulation then consists of the

following cycle repeated over and over:

1. The low-level VR function which reads the input devices is invoked.

2. The new data is automatically passed to the corresponding nodes in

COOL, as described in Section 2.1.

3. CLIPS is run, and any rules which were actiwted by the new data are

executed.

4. The execution of these rules in turn triggers other rules in a domino-like

effect until all relevant rules for this cycle have been fired.

. The V1% library renders the new scene from its internal database (which

reflects all the new changes caused by CLIPS rules), and outputs this

image to the user's HMD.

While the low-level routines still provide the means for reading the input

and generating the output of VR, the heart of the simulation loop is the

execution of the CLIPS rule-base. This provides an elegant means for in-

crementally increasing the complexity of the simulation; best of all, CLIPS'

use of the Rete algorithm means that only relevant rules will be considered

on each cycle of execution. This can be a tremendous advantage in complex

simulations.

368

2.5 More VR functions

There are some VR interactions that cannot be accomplished solely through

motion. Fortunately, CLIPS provides the ability to create user-defined func-

tions. This allows the programmer to invoke external functions from within

CLIPS. User-defined CLIPS functions can be provided for most of the useful

functions in a VR function library so that the programmer can use these func-

tions on the fight-hand side of interaction rules. Some useful VR functions
include:

make-invisible Takes the node-index of an instance as an argument.

chauge-color Requires the node-index of an instance and three floats spec-

ifying the red, green, and blue characteristics of the desired color.

test-collision Takes two node-index integers and determines whether

their corresponding objects are in contact in the simulation.

play-sotmd Takes an integer which corresponds to a soundfile (this corre-

spondence is established in another index file of soundfiles).

The play-sound function takes an integer as an argument, instead of

a string or symbol, because there is slightly more overhead in processing

and looking up the structures associated with strings, and speed is crucial

in a virtual reality application. Similarly, all user-defined functions should

receive the integer value stored in an instance's node-index slot, instead of

the instance-name, for speed purposes.

It is also possible to create a library of useful deffunctions which do many

common calculations completely within CLIPS. For example, a distance func-

tion, which takes two instance-names and returns the distance between their

corresponding objects, can be written as follows:

(deffunction distance (?nl ?n2)

(sqrt (+ (** (- (send ?n2 get-x)

(** (- (send ?n2 get-y)

(** (- (send ?n2 get-z)

(send ?nl get-x)) 2)

(send ?nl get-y)) 2)

(send ?nl get-z)) 2))))

369

3 Layers upon Layers

Once basic VR functionalityisadded to CLIPS, virtualenvironments can

be organized in CLIPS according to familiarobject-orientedand rule-based

design principles. For example, a RABBIT class could be defined, and the

example rules could be modified to pattern match on the is-afieldinstead of

the name field.Ifthiswere done, any RABBIT instance would automatically

derive the appropriate behavior. Once a libraryof classesisdeveloped and

an appropriate knowledge-base to go with it,creating a sophisticatedvirtual

environment ismerely a matter of instantiatingthese classesaccordingly.

Consider thisfinalexample, illustratingpoints from Sections 2.5 and 3.

(defrule shy-rabbit-behavior

?rabbit <- (object (is-a RABBIT) (personality shy)

(x7) (y 7) (z?))
?band <- (object (is-a RAND) (x 7) (y ?) (z ?))

m>

(if (< (distance 7rabbit ?hand) 100) then

(bind ?rabbit-index (send 7rabbit get-node-index))

(if (evenp (random)) then

(change-color ?rabbit-index I 0 O) ; rabbit blushes

else

(make-invisible 7rabbit-index))))

This rule becomes relevant only ifthere isa shy rabbit and a hand in the

simulation. Ifso, shy-rabbit-behavior isactivated whenever the hand or

the rabbit moves. Ifthe hand gets closeto the rabbit,there isa 50% chance

that the rabbit willblush,and a 50% chance that the rabbit willcompletely

vanish.

4 Conclusion

CLIPS has been successfullyenabled with virtualrealityprogramming capa-

bilities,using the methodologies described in thispaper. The two testusers

of this approach have found CLIPS to be a simpler, more natural paradigm

for programming virtualrealityinteractionsthan the standard approach of

managing and invoking VR functionsdirectlyin the C language. Hopefully,

370

by using high-level languageslike CLIPS in the future, more VR program-

mers will be freed from their current constraints of worrying about low-level

details, and get on with what really matters -- creating complex, intelligent,
interactive environments.

References

[1] Ben Delaney. State of the art VR technology circa 1994. New Media,

4(8):44-45, August 1994.

[2] Ben Delaney. Virtual reality goes to work. New Media, 4(8):40-48, August
1994.

[3] Joseph Psotka. Synthetic environments for training. In Second Annual

Synthetic Environments Conference, pages 79-107. Technical Marketing

Society of America, March 1994.

[4] U.S. Army Training and Doctrine Command and U.S. Army Research

Office. Executive Summary -- Virtual Reality/Synthetic Environments

in Army Training, October 1992.

[5] Andries van Dam. VR as a forcing function: Software implications of

a new paradigm. In IEEE 1993 Symposium on Research Frontiers in

Virtual Reality, pages 5-8, Los Alamitos, California, October 1993. IEEE

Computer Society Technical Committee on Computer Graphics, IEEE

Computer Society Press.

371

